Stochastic Modeling of Dormant Cancer Tumors

  • Kouadio Jean Claude Kouaho University Felix HOUPHOUET-BOIGNY
  • Yao Modeste N'Zi University Felix HOUPHOUET-BOIGNY
  • Innocent Adoubi
Keywords: Birth-and-death process, cancer therapy, tumor resistance, tumor relapse

Abstract

During tumor progression, many interactions are established between cancer cells and their micro-environment. These interactions promote the survival of cancer cells and resistance to therapy. This ability of the tumor to develop resistance to therapy resides in the mechanism of dissemination of cancer cells from the primary tumor. Disseminated cancer cells may remain dormant for a certain period of time. These dormant cells reactivate under the influence of an environment and cause therapeutic failure. In this paper, we propose a stochastic computational model of tumor dormancy and resistance. This mathematical model is based on the description of the tumor cell colony as a branching process. With this model, we identify the patient's status at diagnosis, and optimized treatment strategies by investigating the therapeutic efficiency, resistance and tumor relapse.

Published
2021-08-02
How to Cite
Kouaho, Kouadio Jean Claude, Modeste N’Zi, and Innocent Adoubi. 2021. “Stochastic Modeling of Dormant Cancer Tumors”. Letters in Biomathematics 8 (1), 101–118. https://lettersinbiomath.journals.publicknowledgeproject.org/index.php/lib/article/view/423.
Section
Research